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Abstract— Mobile edge computing (MEC) has been an effective
paradigm for supporting computation-intensive applications by
offloading resources at network edge. Especially in vehicular net-
works, the MEC server, is deployed as a small-scale computation
server at the roadside and offloads computation-intensive task
to its local server. However, due to the unique characteristics of
vehicular networks, including high mobility of vehicles, dynamic
distribution of vehicle densities and heterogeneous capacities
of MEC servers, it is still challenging to implement efficient
computation offloading mechanism in MEC-assisted vehicular
networks. In this article, we investigate a novel scenario of compu-
tation offloading in MEC-assisted architecture, where task upload
coordination between multiple vehicles, task migration between
MEC/cloud servers and heterogeneous computation capabilities
of MEC/cloud severs, are comprehensively investigated. On this
basis, we formulate cooperative computation offloading (CCO)
problem by modeling the procedure of task upload, migration
and computation based on queuing theory, which aims at
minimizing the delay of task completion. To tackle the CCO prob-
lem, we propose a probabilistic computation offloading (PCO)
algorithm, which enables MEC server to independently make
online scheduling based on the derived allocation probability.
Specifically, the PCO transforms the objective function into
augmented Lagrangian and achieves the optimal solution in an
iterative way, based on a convex framework called Alternating
Direction Method of Multipliers (ADMM). Last but not the
least, we implement the simulation model. The comprehensive
simulation results show the superiority of the proposed algorithm
under a wide range of scenarios.
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I. INTRODUCTION

MOBILE edge computing (MEC) has been an effective
paradigm for supporting computation-intensive appli-

cations with low latency requirements in vehicular networks
by offloading resources at network edge [1]. Especially,
the MEC, as one type of mainstream MEC-based architectures,
is deployed as a mobility-enhanced small-scale data center at
the fixed wireless infrastructures, such as Access Points (APs),
Base Stations (BSs) and Roadside Units (RSUs), and capable
of offloading the computation-intensive tasks from mobile
vehicles in the local servers rather than uploading to the central
cloud via wireless communication [2], [3], which greatly
reduces task completion delay. Therefore, the MEC-based
architecture is promised to be the fundamental of many intel-
ligent transportation systems (ITSs), such as large-scale traffic
sensing [4], pattern recognition with image processing [5]
and virtual-reality-assisted driving [6]. However, due to the
unique characteristics of vehicular networks [7], such as high
mobility of vehicles, dynamic distribution of vehicle density,
heterogeneous computation capacities of MEC/cloud servers,
computation offloading still suffers from unbalance workload
distribution among MEC servers, which can badly degrade the
system performance.

Recently, great efforts have been focused on computa-
tion offloading in MEC-based vehicular networks. Some
researchers proposed several MEC-based service architec-
tures for computation offloading in vehicular networks. Ref-
erences [8], [9] applied software-defined network (SDN) to
propose a programmable, flexible, and controllable network
architecture, which can potentially improve resource utiliza-
tion of MEC servers and achieve sustainable network develop-
ment. Further, some researchers proposed several computation
offloading strategies, which enable terminal users to adaptively
offload excessive computation-intensive tasks to the MEC/fog
nodes and improve overall system performance, such as energy
consumption [10] and task completion delay [11]. However,
these computation offloading strategies are implemented at
terminal users based on the global knowledge of workload
distribution, which takes high communication cost. Further,
they have not considered the effect of vehicle mobility on
wireless bandwidth competition of task upload. Particularly,
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cooperative task offloading between MEC/cloud servers by
synthesizing multiple critical factors, including mobility fea-
tures of vehicles, heterogeneous communication and compu-
tation capacities of cloud/MEC servers, are not investigated.

In this article, we comprehensively investigate the ser-
vice scenario of cooperative computation offloading in
MEC-assisted service architecture, where multiple MEC
servers and remote cloud offload computation-intensive tasks
in a cooperative way. Specifically, mobile vehicles are able
to upload the task associated with data size and computation
resources requirements to MEC servers at the coverage of
wireless interface. The MEC is assumed to be wired con-
nected to different types of wireless interfaces, which are
characterized by different service rates of task upload. Further,
the heterogeneous computation capacities of MEC servers are
characterized by several key factors, such as processor number,
computation rate, etc. The cloud server is supposed to own
sufficient number of processors but far away from the end
users. Hence, the task can always be assigned to an idle
processor immediately, but has to tolerate additional trans-
mission delay compared to MEC server. In this article, each
MEC server is regarded as local scheduler and responsible for
making online scheduling decision of new arrival tasks, which
includes determining task upload, migration and computation
server. To implement effective scheduling, the following issues
are still critical to be addressed. First, wireless bandwidth
competition among multiple vehicles may deteriorate the
performance of task upload. Therefore, the coordination of
task upload has to be designed to distribute task upload
workload by considering mobility features of vehicles. Second,
the dynamic workload distribution may make some MEC
servers with weak computation capability overloaded, which
results in serious service delay. Particularly, in dynamic vehic-
ular environment, an online allocation approach has to be
designed to achieve global optimal computation workload by
synthesizing real-time workload and computation capacities of
MEC/cloud servers. To sum up, as far as we know, this article
is the first work dedicated to resolving the above issues of
computation offloading in MEC-assisted vehicular networks.
The contributions of this article are outlined as follows.

• We investigate the service scenario of computation
offloading in MEC-assisted vehicular networks, where
mobility features of vehicles, dynamic distributions of
vehicle density and heterogeneous communication capa-
bilities of MEC servers, are comprehensively studied. Par-
ticularly, the horizontal and vertical cooperations between
MEC/cloud servers are utilized for balancing the work-
load distribution in dynamic vehicular environment.

• We formulate a problem of cooperative computation
offloading (CCO) by theoretically modeling the proce-
dure of task upload, migration and computation based
on queuing theory, which aims at minimizing expected
service delay. The task upload and migration procedure
are characterized by M/M/1 model, where the time
consumption is determined by dwelling time of vehicles,
vehicle arrival rate and service rate of task upload and
migration. Particularly, the task computation procedure

of MEC and cloud server are simulated by M/M/C
and M/M/∞ queuing models, where the heterogeneous
capabilities of MEC servers are characterized by different
processor numbers and processing rates.

• We propose a probabilistic computation offloading (PCO)
algorithm, which enables the MEC server to online make
scheduling decision independently based on a derived
optimal allocation probability. Each MEC server has its
own allocation probability, which is determined by para-
meter setting and adaptive to different service scenarios.
Specifically, we first verify the convexity of the objective
function by decomposing it into multiple components
and then transforms the objective function of the CCO
problem into the formulation of augmented Lagrangian.
Based on the ADMM framework, the optimal solution is
achieved in an iterative way.

• We build the comprehensive system model by integrating
real-world map, realistic vehicular trace and schedule
module. The extensive performance evaluation demon-
strates the superiority of our proposed algorithms com-
pared to four competitive algorithms in a wide range of
service scenarios.

The remainder of this article is organized as follows.
Section II reviews the related work. In Section III, the system
model is presented. In Section IV, we formulate the CCO
problem. Section V gives the algorithm design. Section VI
gives a comprehensive simulation study. Finally, Section VII
concludes this article.

II. RELATED WORK

A. MEC-Based Service Architecture

In the last decades, several types of MEC-based service
architectures have been proposed for improving system per-
formance of vehicular networks from different perspectives.
For edge caching, [12] proposed a novel cooperative content
caching architecture, where RSUs, based stations and vehicles
are regarded as edge cache servers and can predictively
download data for reducing data access time. For edge commu-
nication, [13] proposed a data offloading architecture, where
the MEC server is regarded as a small backhaul network for
accelerating social context delivery and reducing the load of
core network. Further, [14] proposed a multihomed nested
vehicular networks, where mobile vehicles, such as buses
and ambulances, are regarded as edge routers and responsible
for choosing optimal routing path to support QoS-aware ITS
services. For edge computing, [15] explored the novel collab-
orative vehicular edge computing network architecture, which
includes design principles, corresponding functional modules,
communication process, as well as installation and deployment
ideas. They also discussed the promising technical challenges,
including collaborative coalition formation, collaborative task
offloading and mobility management. In particular, [16] pro-
posed a comprehensive service architecture integrating edge
caching, edge communication and edge computation, where
resources sharing between vehicles is implemented by virtual
machine migration. These studies focused on the architecture
design of MEC-based vehicular networks, which reveals the
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potential benefits of MEC. However, more specific offloading
models and mechanisms, particularly for computation offload-
ing, which is the fundamental of ITS services, should be
further investigated.

B. Computation Offloading Model in MEC-Based Vehicular
Networks

Many efforts have been paid on investigating the compu-
tation offloading models of MEC-based vehicular networks
based on different service scenarios. Reference [17] proposed
a vehicular fog computing (VFC) model, where mobile vehi-
cles are considered as the edge devices for task offloading
without deployment cost. However, due to stochastic behavior
of vehicles, the capability of VFC is unstable and the task
may suffer from unexpected delay. Reference [18] conceived
the base station (BS) as MEC servers to support real-time
computation-intensive task, where the computation capabil-
ity of MEC server is formulated as queuing model. They
investigated the cooperation mechanism between multiple
MEC servers via horizontal wired connection for improving
the users’ QoS in terms of both time saving and energy
consumptions. However, as the computation capacities of
MEC server are still limited, the task may tolerate serious
delay when the MEC server is overloaded. To resolve this
issue, [19] proposed a hybrid computation offloading model,
where the task workload can be optimal distributed among
MEC and cloud servers based on a theoretically derived thresh-
old. To further improve resource utilization, [20] proposed a
three-layer hierarchical architecture of computation offloading,
which synthesizes the resources of mobile vehicles, RSUs
and remote cloud. An optimization model integrating network,
transmission and computation, is formulated for task offload-
ing decision by minimizing energy consumption. However,
the unique characteristics of vehicular networks, such as high
mobility of vehicles, dynamic distribution of vehicle density,
the heterogeneity of MEC servers, are not fully considered.
Particularly, the computation offloading model combing both
horizontal and vertical cooperation are not comprehensively
investigated.

C. Optimization Mechanism for MEC-Based Computation
Offloading

In addition, many studies have investigated various
optimization mechanisms to derive efficient solutions of
computation offloading in MEC-based vehicular networks.
Reference [21] proposed a hybrid intelligent optimization
algorithm based on genetic algorithm and heuristic rules to
solve a joint task scheduling problem. Specifically, the prob-
lem is formulated as a mixed integer non-linear programming
problem (MINLP), which not only determines where the tasks
are performed, but also indicates the execution order of the
tasks on the server. Reference [22] proposed a convex-based
algorithm, called Interior point method (IPM) to achieve
the optimal solution of a multi-objective optimization model
based on queuing theory by considering energy consumption,
execution delay, and payment cost. However, these two meth-
ods are iterative-based, which cannot be applied to online

scheduling due to high time complexity in large scale network.
To be more scalable, [23] designed a deep reinforcement
learning (DRL) framework, where data cache, communica-
tion and computation are operated at multi-timescale levels.
The mobility-aware reward estimation is proposed for fast
parameter configuration to mitigate the complexity due to
the large action space. However, the proposed DRL-based
model is based on centralized scheduling, which cannot be
applied to the distributed scenario, where each MEC server is
regarded as an independent agent. To resolve this issue, [24]
proposed a multiuser non-cooperative computation offloading
game, where multiple vehicles compete for MEC resources.
A distributed offloading algorithm is proposed to achieve
optimal solution by converging to a unique Nash equilib-
rium. Further, [25] formulated the cooperative computation
offloading game for task offloading between MEC server and
terminal users based on group utility maximization. They
proposed a social-aware Nash equilibrium and a reinforce-
ment learning algorithm for strong and weak information
cases, respectively. However, the game-based model requires
information exchange between vehicles, such as decision and
result feedback, where the communication overhead cannot
be neglected with high vehicle density. Further, they only
focused on the offloading between vehicles and MEC server,
which cannot be directly applied to the MEC/cloud hybrid
architecture.

Distinguished from previous works, our paper investigates a
comprehensive computation offloading model by synthesizing
both horizontal and vertical cooperation, where the mobility
features of vehicles, dynamic vehicle density, heterogeneous
capacities of MEC servers are comprehensively modeled
through the procedure of task uploading, migration and com-
putation offloading. Further, the proposed PCO algorithm is
optimized offlined in advance based on the prediction of
arrival task workload and enables each MEC server to schedule
real-time task online in a distributed way.

III. SYSTEM MODEL

In this section, we present a three-layer service architec-
ture for cooperative computation offloading in MEC-assisted
vehicular networks, as shown in Fig. 1, which includes mobile
user layer, MEC layer and cloud layer. Specifically, in the
mobile user layer, road network is divided into multiple
sub-areas and each one is assumed to be covered by one
type of wireless interfaces, such as APs, BSs and RSUs.
Due to high mobility of vehicles, the vehicle density in one
sub-area may be time-varying and evenly distributed among
these sub-areas. Further, the vehicles in the same sub-area may
compete for the wireless bandwidth of one wireless interface
for task upload. The heterogeneous communication capacities
of wireless interfaces are characterized by different service
rates of task upload. For simplicity, the M/M/1 model is
used for modeling task upload procedure, which indicates that
vehicles have to wait in the task upload queue until the data
of previous tasks is totally uploaded.

In the MEC layer, servers are assumed to be close to
wireless interfaces and communicate with each other via short
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Fig. 1. The service architecture for cooperative computation offloading in MEC-assisted vehicular networks.

wired connection, as shown in Fig. 1. The task data uploaded
at wireless interface is then transmitted to MEC server via
wired connection. Further, the computation capacities of the
MEC servers are characterized by different processor numbers,
varying queuing capacities and diverse service rates of task
computation. Each processor is assumed to compute one task
at one time. When all the processors are busy, the task has
to wait in the queue until at least one of the processors
becomes available. The queuing capacity limits maximum
number of pending tasks in the queue simultaneously. There-
fore, the M/M/C queuing model is adopted for simulating
the task computation procedure of each MEC server.

In the cloud layer, the central cloud server is assumed to
own unlimited number of processors, which indicates the task
arrived at cloud server can be immediately assigned to an
idle processor without pending delay. The M/M/∞ queuing
model is adopted to simulate the task computation procedure
of the cloud. However, compared with MEC layer, task com-
putation in the cloud layer has to take extra communication
time of migrating task from the MEC layer to the cloud
layer. When vehicle density is unevenly distributed, horizontal
collaboration can effectively balance the workload in the MEC
layer by efficiently migrating tasks from overloaded servers to
underloaded servers. On the other hand, when the workload
in MEC layer is overloaded, vertical migration can effectively
avoid intolerant pending delay at MEC server by offloading
extra tasks to the cloud server. Particularly, the M/M/1
queuing model is used for simulating task migration among
MEC/cloud servers.

The MEC server is regarded as the scheduler for making
scheduling decision for each submitted task in its service
range. The detail scheduling procedure of the MEC server
is described as follows. First, the beacon message periodi-
cally broadcast by the vehicles is monitored by the wireless
interface, which includes task submission information, such as
task ID and submission time, and mobility features, such as
the velocity and driving direction. By receiving the collected
information from the wired connected wireless interface,
the MEC server maintains a submission queue for storing
these new tasks. Second, the MEC server makes the scheduling
decision of each task in the submission queue, including task
upload server, task migration server and task computation
server. Third, if the task upload server is equal to the dwelling

server, the task ID will be pushed into the upload queue and the
vehicle waits for uploading task data. Otherwise, the vehicle
keeps silence until driving into the coverage of determined
task upload server. Fourth, after task upload, the MEC server
will check whether the task computation server is equal to
the task upload server. If so, the task is then pushed into the
computation queue in the local server. Otherwise, the task
is pushed into the migration queue and migrated to the
determined task computation server. Fifth, after task migration,
the task waits in the computation queue until one of the
processor is available. In this article, the cost of retrieving
the computation result is not considered since the data size
of computation result is always much smaller the task itself,
which is commonly adopted in related literatures [26].

IV. PROBLEM FORMULATION

A. Preliminary

In this section, we briefly introduce the notations used in this
article. The set of MEC servers is denoted by M . Each mi ∈ M
is assumed to be wired connected to one type of wireless
interfaces, where the service range of mi is determined by the
wireless coverage. For each mi ∈ M , the arrival pattern of
vehicles follows the Poisson process with parameter λi . Each
vehicle is assumed to submit one task, which requires unit
communication resource (denoted by δs) and unit computation
resource (denoted by δc). The dwelling time of vehicles in
the service range of mi is denoted by li . Additionally, ρi j

denote the turning probability of vehicles driving from the
service range of mi to m j . The communication capability of
mi is determined by the connected wireless interface, which
is characterized by the service rate of uploading one task,
denoted by uu

i . The computation capability of mi ∈ M is
characterized by three-tuple (u p

i , pi , ci ), where u p
i , ci and ni

represent the service rate of computing task, the number of
processors owned by mi and the maximum number of tasks
tolerated by mi at the same time, respectively. The service
rate of migrating one task between mi and m j is denoted
by um

i j . The cloud server is denoted by m0. The service rate
of any processors owned by m0 is denoted by u p

0 . It is
noted that the service time of task upload, migration and
computation are assumed to follow the exponential distribution
with the corresponding service rate based on the queuing
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TABLE I

SUMMARY OF NOTATIONS

theory. Further, the allocation probability P(l)
i j→k is used for

indicating the probability that the task submitted to mi is
uploaded at mi (l = 1) or m j (l = 2) and computed by mk .
The primary notations are listed in the Table I.

B. Cooperative Computation Offloading Problem

In this section, we formally introduce the cooperative com-
putation offloading (CCO) problem in detail, which consists of
task upload model, task migration model and task computation
model, respectively.

First, we establish the task upload model for each MEC
server mi ∈ M based on M/M/1 queuing model. For each
mi ∈ M , given arrival rate λi , the expected number of
new submitted tasks in mi choosing mi for task upload is

computed by
M∑

j=1

M∑
k=0

λiρi j P(1)
i j→k . Similarly, for m j ∈ M, j �=

i , the expected number of new arrival tasks that choose

mi for task upload is computed by
M∑

k=0
λ j ρ j i P(2)

j i→k . Then,

the expected upload workload of mi is formulated as follows.

λu
i =

M∑
j=1

M∑
k=1

(
λiρi j P(1)

i j→k + λ jρ j i P(2)
j i→k

)
· δs (1)

Based on M/M/1 queuing model, given expected upload
workload λu

i and service rate of task upload uu
i , the expected

task upload time of mi is formulated as follows.

T u
i =

1

uu
i − λu

i
(2)

As the vehicle has to complete task upload before it leaves
the service range of mi , the expected upload time at each mi

cannot exceed the dwelling time li , expressed as follows.

T u
i ≤ li , ∀mi ∈ M (3)

Therefore, the expected task upload time of the system is
computed as follows.

E(T u) =

M∑
i=1

λu
i T u

i +
M∑

i=1

M∑
j=1

λiρi j P(2)
i j→k li

M∑
i=1

λi

(4)

where
M∑

i=1

M∑
j=1

λiρi j P(2)
i j→kli is the summation of dwelling time

tolerated by vehicles before entering the service range of task
upload server.

Second, we model the procedure of task migration between
two MEC servers based on M/M/1 queuing model. Specifi-
cally, the workload of task migration from mi to m j , denoted
by λm

i j , is calculated as the product of the number of tasks that
choose mi for task upload and m j for task computation and
unit communication resource, which is expressed as follows.

λm
ik =

M∑
j=1

(λiρi j P(1)
i j→k + λ j ρ j i P(2)

j i→k) · δs (5)

Based on M/M/1 queuing model, the expected task migration
time between mi and mk , is computed as follows.

T m
ik =

1

um
ik − λm

ik
(6)

Further the expected migration workload λm
ik cannot exceed

the service rate of task migration um
ik , otherwise the service

time will achieve ∞. Therefore the following constraint has
to be satisfied.

λm
ik ≤ um

ik , ∀mi , m j ∈ M (7)

Particularly, task migration workload from the MEC layer to
the cloud layer is the summation of the workload of task
migration from mi ∈ M to m0, which is computed as follows.

λm
0 =

M∑
i=1

M∑
j=1

λi

(
ρi j P(1)

i j→0 + ρi j P(2)
i j→0

)
· δs (8)

Then, the expected task migration time from the MEC layer
to the cloud layer is computed as follows.

T m
0 =

1

um
0 − λm

0
(9)

Similarly, the following constraint should be satisfied.

λm
0 ≤ um

0 (10)

Therefore, the expected task migration time of the system
is computed by the summation of task migration time between
MEC and cloud servers divided by the total expected number
of new arrival tasks in the system.

E(T m) =

M∑
i=1

M∑
k=1

λm
ik T m

ik + λm
0 T m

0

M∑
i=1

λi

(11)

It is noted the task migration time is affected by dynamic
distribution of vehicle density. Higher uneven distribution of
vehicles, more numbers of tasks need to be migrated between
MEC servers for load balance. Accordingly, the value of λm

ik
increases and results in the increasing of task migration time.

Third, we utilize M/M/C and M/M/∞ queuing model
to establish the task computation model of MEC and cloud
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servers, respectively. For each mi ∈ M , the expected compu-
tation workload assigned to mk is computed as follows.

λ
p
i =

M∑
k=1

M∑
j=1

λkρkj

(
P(1)

kj→i + P(2)
kj→i

)
δc, ∀mi ∈ M (12)

Based on M/M/C queuing model, given expected task
computation workload λ

p
i , the processor number ci , ser-

vice rate of task computation u p
i and queuing capacity ni ,

the expected task computation time of mi is formulated as
follows.

T p
i =

ci∑
k=0

k
(λ

p
i /u p

i )k

k! +
ni∑

k=ci+1
k

(
λ

p
i

ci u
p
i

)k

·ci
ci

ci !

λ
p
i

⎛
⎜⎝ ci∑

k=0

(λ
p
i /u p

i )k

k! +
ni∑

k=ci+1

(
λ

p
i

ci u
p
i

)k

·ci
ci

ci !

⎞
⎟⎠

(13)

For cloud server m0, based on M/M/∞ model,
the expected computation workload and computation time are
formulated as follows.

λ
p
0 =

M∑
k=1

M∑
j=1

λkρkj

(
P(1)

kj→0 + P(2)
kj→0

)
δc (14)

T p
0 =

1

u p
0

(15)

Based on Eqs. (12) ∼ (15), the expected task computation
time of the system is formulated as follows.

E(T p) =
λ

p
0 · T p

0 +
M∑

i=1
λ

p
i · T p

i

M∑
i=1

λi

(16)

It is noted that even with the same workload, the computation
time of tasks can still differ with each other due to heteroge-
neous computation capabilities of MEC/cloud servers, which
indicates unbalanced workload distribution.

Based on Eqs. (4), (11) and (16), the expected service delay
is defined as the summation of expected task upload time,
expected task migration time and expected task computation
time, which is formulated as follows.

E(T delay) = E(T u)+ E(T m)+ E(T p) (17)

The unbalanced workload distribution among MEC servers
will increase the value of E(T u), E(T m) and E(T p), which
leads to overlong service delay of tasks.

The formulation of the CCO problem is presented as fol-
lows. Given the arrival rate λi and the dwelling time li , service
rate of task upload uu

i , task migration uu
i j and task computation

u p
i , the objective of the CCO problem is to minimize both

expected service delay by searching the optimal allocation
probability P = [P(l)

i j→k ], ∀i, j ∈ [1, M], k ∈ [0, M],

l ∈ {1, 2}, which is formulated as follows.

min
∀Pl

i j→k

E(T delay)

s.t . C1 : T u
i ≤ li , ∀i ∈ [1, M]

C2 : λu
0 ≤ uu

0,

C3 : λp
i ≤ ci u

p
i , ∀i ∈ [1, M]

C4 : λm
i j ≤ um

i j , ∀i, j ∈ [1, M]

C5 :
M∑

k=1

2∑
l=1

Pl
i j→k = 1, ∀i, j ∈ [1, M]

C6 : 0 ≤ Pl
i j→k ≤ 1, ∀i, j ∈ [1, M],

k ∈ [0, M], l ∈ 1, 2 (18)

Based on the formulated model in Eq. (18), we can have the
following observations. First, the high mobility of vehicles is
characterized by the dwelling time of vehicles in the coverage
of MEC server and the turning probability of vehicles that
drive from the coverage of one MEC server to another. Second,
the dynamic distribution of vehicle density is characterized by
different vehicle arrival rates at the coverage of MEC servers,
which represents varying workload distribution. Third, the het-
erogeneous computation capacities of MEC/cloud servers are
characterized by different computation models, where MEC
and cloud server are characterized by M/M/C queuing model
and M/M/∞ queueing model. Particularly, MEC servers have
different processor numbers and varying service rates. Fourth,
the above factors can jointly cause unbalanced workload dis-
tribution among MEC servers, which results in serious service
delay. Therefore, the objective of the optimization model is to
minimize the service delay by deriving the optimal offloading
probability.

V. ALGORITHM DESIGN

In this section, we propose probabilistic computation
offloading (PCO) algorithm, where the basic principle of
the PCO is described as follows. First, The PCO achieves
the optimal allocation probability for each MEC server by
minimizing the service delay with satisfying the constraints
of the CCO model. Accordingly, each MEC server can inde-
pendently schedule the offloading decision for each pending
task in its coverage in a probabilistic way. The allocation
probability is determined by the given parameters including
mobility features of vehicles (i.e., dwelling time and turning
probability), vehicle density distributions (i.e., vehicle arrival
rate) and computation capabilities of MEC/ loud servers (i.e.,
the number of processors and the computation rate). Therefore,
the allocation probability differs in MEC servers with differ-
ent service scenarios, which can adaptively achieve balanced
workload distribution among MEC/cloud server. Specifically,
we first prove the convexity of the objective function by
decomposing it into multiple components and analyzing the
convexity of each component. Further, we achieve the optimal
allocation probability in an iterative way and implement the
computation offloading strategy at each MEC server based on
derived allocation probability.
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A. The Convexity of Objective Function

In this section, we analyze the convexity of the objective
function E(T s). Based on Eq. (17), E(T s) can be decomposed
into three components: E(T u), E(T m) and E(T c), which will
be analyzed respectively as follows.

First, based on Eq. (4), E(T u) is the affine mapping of
λu

i T u
i and λiρi j P(2)

i j→k . Based on convex theory [27], affine
mapping preserves the convexity property. Therefore, we only
need to prove the convexity of λu

i T u
i . We derive the derivative

and the second derivative of a general function f (λ) = λ
u−λ

with respect to λ ∈ [0, u), which is shown in Eq. (19).

f ′(u) = u

(u − λ)2 , f ′′(u) = 2u

(u − λ)3 (19)

As f ′′(u) > 0 with respect to λ ∈ [0, u), f (λ) is proved to be
a convex function. Further, λu

i is the affine mapping of Pl
i j→k ,

which preserves the convexity. Therefore, the first component
T u is proved to be convex with respective to λu

i ∈ [0, uu
i ], i =

1, 2, . . . , M .
Second, based on Eq. (11), E(T m) is the affine mapping of

λm
ik T m

ik and λm
0 T m

0 . Since the structure of λm
ik T m

ik is the same
to λu

i T u
i , then λm

ik T m
ik is convex with respect to λm

ik ∈ [0, um
ik ].

Therefore, the second component T m is proved to be convex
with respective to λm

ik ∈ [0, um
ik ], i, k = 1, 2, . . . , M .

Third, based on Eq. (16), E(T p) is the affine mapping
of λ

p
i T p

i , which indicates that we only need to prove the
convexity of λ

p
i T p

i . For generality, we analyze the general
function, which is formulated as follows.

f (x) =

c∑
k=0

k ck

k! x
k +

n∑
k=c+1

k cc

c! x
k

c∑
k=0

ck

k! xk +
n∑

k=c+1

cc

c! xk
(20)

where c, n and x = λ
cu are processor number, queuing capacity

and the ratio of task computation workload and computation
rate of MEC server, respectively. Since the second derivative
of Eq. (16) is too complicated to be calculated and analyzed,
we plot the curves of the relationship between f (x), processor
number c and queuing capacity n, respectively. In practical
application, the processor number of MEC server and queuing
capacity is usually not large due to high deployment cost and
overlong delay pending in the computation queue. Therefore,
we test the value of λi T p

i under processor number and queuing
capacity varying with [1,10] and [20,100], respectively, shown
in Figs. (2) and (3). It is observed that f (x), i.e., λi T p

i
under different processor numbers and queuing capacities are
presented to be convex with respect to x ∈ [0, 1). Though the
convexity of f (x) is not proved in the theoretical way, we can
boldly make the assumption that the λi T p

i is convex with
respect to λ

p
i ∈ [0, u p

i ci ) with the constraint of ci ∈ [2, 10]
and ni ∈ [20, 100]. This assumption will be further validated
by extensive simulation results that the solution will finally
converge based on the proposed convex-based approach in
Section VI.

B. Probabilistic Computation Offloading Algorithm

In this article, we will introduce the probabilistic com-
putation offloading (PCO) algorithm based on ADMM. The

Fig. 2. The curve of λi T p
i under different processor numbers.

Fig. 3. The curve of λi T p
i under different queuing capacities.

ADMM [28] is a powerful optimization method, which can
be applied to a variety of applications, especially popu-
larly applied in wireless network [29], [30]. Particularly,
the ADMM approach is still useful in solving non-convex
problem by achieving a local or global optimal solution, which
is suitable for solving the CCO problem. We use the PCO
algorithm to derive the allocation probability offline, which can
be solved by the powerful cloud server. Further, the solution
can be performed online at each MEC server independently
with neglected communication overhead of control message
between MEC and cloud servers.

First, in order to utilize the ADMM approach, the COO
problem has to be transformed into the form of augmented
Lagrangian. We add an Nz -dimension virtual variable vector
Z = {zi }, where Z ∈ RNz+ and Nz = M3 + 3M2 + 2M + 1,
to transform the inequality constraints into the set of equations.
Then, Eq. (18) is transformed as follows.

min
∀Pl

i j→k

E(T delay)

s.t . C1 : λu
i + zi − li = 0, ∀i ∈ [1, M]

C2 : λu
0 + z1+M − uu

0 = 0,

C3 : λp
i + zi+M+1 − ci · u p

i = 0, ∀i ∈ [1, M]
C4 : λm

i j + z(i+1)M+ j+1 − um
i j = 0, ∀i, j ∈ [1, M]
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C5 :
M∑

k=1

2∑
l=1

Pl
i j→k + z(i+1+M)M+ j+1 − 1 = 0,

∀i, j ∈ [1, M]
C6 : Pl

i j→k + zi(2M2+2M)+ j (2M+2)+2k+l−2M−3 − 1 = 0,

∀i, j ∈ [1, M], k ∈ [0, M], l ∈ {1, 2} (21)

It is observed that th constraints C1 ∼ C6 are linear, then
Eq. (21) can be formulated as follows.

min∀P,Z
f (P)+ g(Z)

s.t . A P + B Z = C (22)

Particularly, g(Z) is an indicator function where g(Z) = 0 if
each zi ∈ Z ∈ [0, 1]. Otherwise, g(Z) = +∞. P is an Np

dimensional vector (Np = 2M2(M + 1)), where the index of
the element Pl

i j→k is (i − 1) ∗ 2M(M + 1)+ ( j − 1) ∗ 2(M +
1)+(k−1)∗2+ l. Accordingly, A is a Nz×Np matrix, where
each element akl is the coefficient of lth element of P in the
kth constraint. Then, B is an Nz × Nz diagonal matrix and C
is an Nz dimensional vector.

On this basis, we can transform Eq. (22) into the augmented
Lagrangian, which is formulated as follows.

Lρ(P, Z, U) = f (P)+ g(Z)+ U(A P + B Z − C)

+ρ

2
||A P + B Z − C||22 (23)

where U is the dual variable vector and ρ > 0 is the step size
for controlling the convergence speed.

Pk+1 = arg min∀P
Lρ(P, Zk, Uk)

⇔ arg min∀P
{ f (P)+ g(Zk)+ Uk(A P + B Zk)

+ρ

2
||A P + B Zk − C||22} (24)

Zk+1 = arg min∀Z
Lρ(Pk+1, Z, Uk)

⇔ arg min∀Z
{g(Zk)+ Uk B Z

+ρ

2
||A Pk+1 + B Z − C||22} (25)

Uk+1 = Uk + ρ(A Pk+1 + B Zk+1 − C) (26)

Based on the ADMM approach, the solution consists of three
iterations, which are formulated in Eq.(24)∼(26). It is noticed
that the Eqs. (24) and (25) are unconstrained convex functions,
which can be solved by standard convex optimization tools.
Further, to evaluate the stopping criterion, the primal and dual
residuals are formulated in Eq. (27), respectively, which is
used for checking whether to terminate the iteration or not by
comparing with two thresholds ε pri and εdual at each iteration.

r = A Pk + B Zk − C (27)

s = AT B(Zk − Zk−1)P + B Z − C (28)

On this basis, we propose the PCO algorithm, where the
Pseudocode is shown in Alg. 1 and the detail procedure is
described as follows. First, we initialize the related parameters,
including ε pri , εdual , P0, Z0 and U0. Specifically, each
element Pl

i j→k ∈ P is set to 1
2M2(M+1)

and Z, U are set to

zero vectors. To guarantee the efficiency, ε pri and εdual are

Algorithm 1 Probabilistic Computation Offloading (PCO)
Step 1 (Offline): derive the optimal allocation probability
1: Initialize ε pri , εdual , P0, Z0 and U0

2: while convergence_indicator == 0 do
3: Update P(t) based on Eq. (24)
4: Update Z(t) based on Eq. (25)
5: Update U(t) based on Eq. (26)
6: Calculate ||r(t)||2 = ||A P(t)+ B Z(t)− C||2
7: Calculate ||s(t)||2 = ||AT B(Z(t)− Z(t − 1))||2
8: if (||r(t)||2 ≤ ε pri and ||s(t)||2 ≤ εdual) or t >= tmax

then
9: convergence_indicator = 1

10: end if
11: t = t + 1
12: end while
13: P ← P(t)
14: Compute Pc based on Eq. (29)
Step 2 (Online): make scheduling decision of new tasks
15: while there exists a new task submitted by vehicles do
16: mi ← the dwelling server, m j ← the next dwelling

server
17: Randomly generate tmp from interval [0, 1]
18: for k from 0 to ||M|| do
19: for l from 1 to 2 do
20: if k == 1&& l == 1 && tmp < Pc

i j (k, l) then
21: select_indicator =1
22: else if k == 1 && l == 2 && tmp ≥ Pc

i j (k+1, l−
1) && tmp < Pc

i j (k, l) then
23: select_indicator ==1
24: else if tmp ≥ Pc

i j (k−1, l) && tmp < Pc
i j (k, l) then

25: select_indicator ==1
26: end if
27: if select_indicator ==1 then
28: if l == 1 then
29: mu ← i
30: else
31: mu ← j
32: end if
33: mc ← k
34: if mu == mc then
35: mc ← ∅
36: else
37: mc ← k
38: end if
39: end if
40: end for
41: end for
42: end while

set to 0.5 for accelerating convergence. Second, we update
Pk , Zk and Uk in sequential order, which are based on
Eqs. (24), (25) and (26), respectively. Third, two residuals r
and s are computed based on Eq. 27. If both ||r ||2 ≤ ε pri and
||s||2 ≤ εdual are satisfied, the iteration terminates. Otherwise,
the iteration continues until the maximum iteration number is
achieved. After that, the allocation probability P is obtained
and the cumulative probability function Pc

i j (k, l) is computed
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Fig. 4. The heat map of the distribution of vehicle densities under different traffic scenarios.

based on Eq. (29).

Pc
i j (k, l) =

⎧⎪⎨
⎪⎩

P(l)
i j→k

i f k == 1, l == 1

Pc
i j (M + 1, l − 1)+ P(l)

i j→k
i f k == 1, l == 2

Pc
i j (k − 1, l)+ P(l)

i j→k
otherwi se

(29)

The above procedure shown in lines 1 ∼ 14 can be imple-
mented offline efficiently by powerful cloud server, since the
vehicle arrival rate can be predicted or estimated based on
traffic flow prediction techniques [31]. Based on Pc

i j (k, l),
the MEC server can make the scheduling decision for the new
tasks online. For each new task, a random variable tmp is
generated from [0,1]. Then, the cloud server determines the
probability interval that tmp belongs to in an iterative way.
Once the probability interval is determined, the MEC server
determines task upload, migration and computation servers.
The detail procedure is shown in lines 17 ∼ 42 of Alg. 1. The
oneline phase only takes O(2M) time for scheduling each new
task, which is linear to the number of MEC servers.

VI. PERFORMANCE EVALUATION

A. Default Setting

In this section, we implement the simulation model based
on the system model presented in Section III. The real-world
map is based on the core area within the first ring road,
Chengdu City, China. The realistic vehicular trajectories, are
extracted on 7th , November, 2018, as traffic inputs, which
is provided by Didi Chuxing GAIA Initiative [32]. We have
examined five service scenarios with different time periods,
where the traffic characteristics are shown in Table II. Detailed
statistics includes average arrival rate (AAR) of vehicles at
MEC server, the variance of arrival rate (VAR), average
dwelling time (ADT) of vehicles at MEC server and variance
of dwelling times (VDT). Specifically, the traffic workload
increases from Scenario 1 to 5, as well as the dwelling time.
The high value of VAR and VDT indicates the dynamic
mobility feature of vehicles. To better exhibit the system
workload under different scenarios, Fig. 4 shows the heat maps
of vehicle distribution under different traffic scenarios. It is
noted that the vehicle density varies greatly with different
scenarios and is highly uneven distributed in each scenario,
which demonstrates serious unbalanced workload.

There are 1 cloud and 9 MEC servers simulated in
the system, where the MEC servers are uniformly dis-
tributed in the road map. The probability of generating a

computation-intensive task by one vehicle is set to 0.2. Each
task is assumed to require 50 Giga CPU cycles with 5 MB
data. For each MEC server, the service rate of task upload
uu

i and task migration um
i j are randomly generated from the

interval [4.8, 7.2] and [9.6, 12] tasks per minute, which
represents for the transmission rate of [3.2, 4.8] Mb/s and
[6.4, 8] Mb/s, respectively. Further, the task computation rate
u p

i is randomly selected from [1.2, 2.4] tasks per minute,
which represents for the computation rate of [1.0, 2.0] GHz.
Particularly, the processor number and queuing capacity of
each MEC server is randomly generated from [1, 4] and [25,
35], respectively. For central cloud, the number of processors
is unlimited and the computation rate is set to 2.4 task per
minute. The similar parameter settings are also adopted in
these existing literatures [33]–[35]. For algorithm implementa-
tion, ε pri and εdual are set to 0.5. The step size ρ starts from
0.2 and decreases with 0.01 until ρ achieves 0.01. Unless
stated otherwise, the simulation is conducted under default
settings.

For performance comparison, since there exists no feasible
solution which can be directly applied in the CCO problem,
two heuristic algorithms, i.e., Local Server Only (LSO) and
Uniform Selection (US) are adopted for performance evalua-
tion. Besides, two competitive algorithms in the literatures,
called game-based computation offloading (GCO) [24] and
cooperative computation offloading at MEC (CCO-MEC) [18],
are tailored to be suited to the proposed model. The details
are described as follows.

• GCO, is a multi-user non-cooperative computation
offloading game, where each vehicle adjusts the offload-
ing probability by striking the best load balance between
MEC and cloud servers via vertical cooperation.

• CCO-MEC, is a convex-optimization-based algorithm,
which minimizes the service delay of tasks via horizontal
cooperation between MEC servers.

• LSO, always prefers to upload and compute the tasks in
the local server.

• US, randomly chooses task upload and computation
servers among available candidate with equal probability.

For performance evaluation, we collect the following statistics:
the submission time and completion time of each task, denoted
by Qsubmission

i and Q f inish
i ; upload time and computation time

of each task, denoted by Qupload
i and Qcomputat ion

i ; the total
number of task and the number of completed task, denoted by
Qtotal and Qcompleted . On this basis, we define the following
metrics.
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Fig. 5. The ASD of five algorithms under different traffic scenarios.

TABLE II

TRAFFIC CHARACTERISTICS

• Average service delay (ASD): it is defined as the sum-
mation of service delay of all completed tasks divided
by the number of completed tasks, which is computed as
follows.

ASD =
∑Qcompleted

i=1 (Q f inish
i − Qsubmission

i )

Qtotal − Q f ail
(30)

Low value of ASD indicates that the vehicle takes less
delay for receiving the computation result, which brings
better user experience.

• Average upload time (AUT): it is defined as the mean
value of task upload time of all the completed tasks,
which is computed as follows.

AU T =
∑Qcompleted

i=1 Qupload
i

Qcompleted
(31)

Higher value of AUT indicates that more tasks compete
for wireless bandwidth, which degrades the ASD.

• Average computation time (ACT): it is defined as the
mean value of task computation time of all the completed
tasks, which is computed as follows.

ACT =
∑Qcompleted

i=1 Qcomputat ion
i

Qcompleted
(32)

Higher value of AUT indicates higher pending delay for
task uploading, which further degrades the ASD.

B. Simulation Result

1) Effect of Traffic Workload: Fig. 5 compares the ASD
of five algorithms under different traffic workloads. As noted
in Table II, the vehicle arrival rate increases from Scenario
1 to 5, which results in heavier system workload. Accordingly,
the ASD of five algorithms increases. Specifically, the ASD of
CCO-MEC and LSO achieves at a low lever at light workload

Fig. 6. The AUT of five algorithms under different traffic scenarios.

Fig. 7. The ACT of five algorithms under different traffic scenarios.

and increases dramatically when the workload becomes heavy.
The reason behind is that neighboring MEC can cooperate with
each other to handle the unbalanced workload. However, when
the workload exceeds the computation capability of MEC
servers, the computation time will explosively increase. It is
demonstrated in Fig. 7, where the ACT of LSO and CCO-MEC
becomes much higher than other algorithms at heavy work-
load. Even though, the ACT of CCO-MEC can be lower than
that of LSO since CCO-MEC uses horizontal cooperation to
alleviate workload unbalance. Reversely, the ASD of GCO
is higher than that of CCO-MEC at first but then becomes
lower than CCO-MEC. It is because GCO can adaptively
offload the task to the MEC or the cloud based on real-time
workload. The US always achieves the worst performance
since the US uniformly assigns task upload to MEC servers
and tasks tolerate long delay before the vehicles drives into
the assigned server. It is verified by Fig. 6, which shows that
the AUT of GCO achieves much higher than other algorithms.
Particularly, the PCO achieves the lowest ASD across all the
service scenarios. Fig. 8 shows the primal dual variable ||r ||2
under different traffic scenarios, which demonstrates that the
PSO can always achieve convergence in an iterative way.
Based on the observation, this set of simulation result shows
the scalability of the PSO against varying system workloads.

2) Effect of Task Computation Rate: Fig. 9 shows the
ASD of five algorithms under different task computation
rates. Higher value of task computation rates indicates that
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Fig. 8. The curves of the primal dual variable ||r||2 under different traffic scenarios.

Fig. 9. The ASD of five algorithms under different task computation rates.

Fig. 10. The AUT of five algorithms under different task computation rates.

individual task can be served with less computation
time, which indicates lighter service workload. Accordingly,
the ASD of five algorithms decreases dramatically at first with
increasing task computation rates and then the trend slows
down when the task computation rate keeps increasing. This

Fig. 11. The ACT of five algorithms under different task computation rates.

phenomenon is explained as follows. Figs. 10 and 11 show
the AUT and the ACT of five algorithms under different task
computation rates, respectively. The ACT and AUT of five
algorithms are 200s and 50s on average at [0.12, 1.2] task/min,
respectively, which indicates that the ACT dominates the ASD
at first. When the computation rate increases, the ACT of five
algorithms decreases dramatically and becomes less than 50s
on average after the point of [1.2, 2.4] task/min. Since the
service rate of task upload remains the same, the AUT main-
tains at a stable level and dominates the ASD when the task
computation rate keeps increasing. Further, the US achieves
the worst ASD since it consumes overhigh time for uniform
task uploading among different MEC severs. In addition,
the CCO-MEC achieves the highest ASD at beginning since
the CCO-MEC only considers to offload task to MEC servers,
which results in high ACT when the computation capability of
MEC server is weak. Particularly, it is observed that the PCO
still achieves the lowest ASD among five algorithms across
all the scenarios. It is because that the PCO can balance the
AUT and ACT by optimally determining workload distribution
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among MEC/cloud severs. This set of simulation results show
the effectiveness of the PCO against varying computation
capabilities.

VII. CONCLUSION

In this article, we present an MEC-assisted architecture
for cooperative computation offloading in vehicular networks,
where MEC servers are deployed at the roadside and responsi-
ble for making task offloading decision from the mobile termi-
nal users to the MEC/cloud servers. Specifically, the mobility
features of vehicles are characterized by dwelling time and
turning probability between MEC servers. The heterogeneous
communication capacities of MEC servers are characterized by
different service rates of task upload and migration, denoted
by uu

i and uu
j , respectively. Further, the heterogeneity of

computation capacities is characterized by different processor
numbers, varying service rates of task computation and diverse
queuing capacities. With such an architecture, we model the
task upload and migration models based on the M/M/1
queuing model and the task computation model of MEC and
cloud severs based on M/M/C and M/M/∞ queuing model.
By synthesizing the above models, we formulate the problem
of cooperative computation offloading (CCO), which aims at
minimizing the expected system service delay by searching
the optimal allocation probability. Then, we analyze the con-
vexity of the objective function and propose a probabilistic
approach, which consist of oneline and offline phase. In offline
phase, the PCO utilizes the ADMM approach to transform the
objective function into augmented Lagrangian by adding dual
variables and derives the optimal solution in an iterative way
by establishing three iterations. In online phase, the PCO uses
a probabilistic approach to determine the scheduling decision
of each new task based on the optimal allocation probability.
Finally, we build the simulation model and implement the
proposed algorithm as well as four competitive algorithms.
The comprehensive simulation results validate the superiority
of the PCO under a wide range of service scenarios.
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